Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Curr Opin Lipidol ; 34(5): 196-200, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497844

RESUMEN

PURPOSE OF REVIEW: To explore the multiple roles that lysophosphatidic acid (LPA) plays in vascular disease and atherosclerosis. RECENT FINDINGS: A high-fat high-cholesterol diet decreases antimicrobial activity in the small intestine, which leads to increased levels of bacterial lipopolysaccharide in the mucus of the small intestine and in plasma that increase systemic inflammation, and enhance dyslipidemia and aortic atherosclerosis. Decreasing LPA production in enterocytes reduces the impact of the diet. LPA signaling inhibits glucagon-like peptide 1 secretion, promotes atherosclerosis, increases vessel permeability and infarct volume in stroke, but protects against abdominal aortic aneurysm formation and rupture. Acting through the calpain system in lymphatic endothelial cells, LPA reduces the trafficking of anti-inflammatory Treg lymphocytes, which enhances atherosclerosis. Acting through LPA receptor 1 in cardiac lymphatic endothelial cells and fibroblasts, LPA enhances hypertrophic cardiomyopathy. SUMMARY: LPA plays multiple roles in vascular disease and atherosclerosis that is cell and context dependent. In some settings LPA promotes these disease processes and in others it inhibits the disease process. Because LPA is so ubiquitous, therapeutic approaches targeting LPA must be as specific as possible for the cells and the context in which the disease process occurs.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Lisofosfolípidos , Intestino Delgado
2.
J Lipid Res ; 64(5): 100370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059333

RESUMEN

Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.


Asunto(s)
Antiinfecciosos , Aterosclerosis , Dislipidemias , Ratones , Animales , Lisofosfatidilcolinas , Enterocitos/metabolismo , Lipopolisacáridos , Especies Reactivas de Oxígeno , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dieta Occidental , Inflamación/genética , Dislipidemias/metabolismo , Aterosclerosis/genética
3.
Curr Opin Lipidol ; 33(5): 277-282, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979993

RESUMEN

PURPOSE OF REVIEW: This review explores mechanisms by which gut-derived bacteriallipopolysaccharide (LPS) and oxidized phospholipids contribute to chronic systemic inflammation and atherosclerosis. RECENT FINDINGS: Gut-derived LPS enters through the small intestine via two distinct pathways that involve high density lipoproteins (HDL) and chylomicrons. Gut-derived LPS can bind to the LPS-binding protein (LBP) and to HDL 3 in the small intestine and travel through the portal vein to the liver where it does not elicit an inflammatory reaction, and is inactivated or it can bind to HDL 2 and travel through the portal vein to the liver where it elicits an inflammatory reaction. Alternatively, in the small intestine, LPS can bind to LBP and chylomicrons and travel through the lymphatics to the systemic circulation and enhance inflammatory processes including atherosclerosis. Oxidized phospholipids formed in the small intestine regulate the levels and uptake of LPS in small intestine by regulating antimicrobial proteins such as intestinal alkaline phosphatase. Gut-derived LPS and oxidized phospholipids may be responsible for the persistent inflammation seen in some persons with human immunodeficiency virus on potent antiretroviral therapy with undetectable virus levels. SUMMARY: By targeting gut-derived oxidized phospholipids, the uptake of gut-derived LPS may be reduced to decrease systemic inflammation and atherosclerosis.


Asunto(s)
Aterosclerosis , Lipopolisacáridos , Aterosclerosis/metabolismo , Quilomicrones , Humanos , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolípidos/metabolismo
4.
PLoS Pathog ; 18(1): e1010160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995311

RESUMEN

Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.


Asunto(s)
Apolipoproteína A-I , Infecciones por VIH/patología , Inflamación/patología , Intestinos/efectos de los fármacos , Péptidos/farmacología , Proteína ADAM17/efectos de los fármacos , Animales , Fármacos Anti-VIH/farmacología , Humanos , Ratones
5.
Cell Mol Gastroenterol Hepatol ; 13(4): 1095-1120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35017061

RESUMEN

BACKGROUND AND AIMS: Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease. We previously reported that absence of macrophage cyclooxygenase 2 (COX2) exacerbates inflammatory bowel disease-like intestinal inflammation. To elucidate the underlying pathogenic mechanism, we investigated here whether COX2 mediates macrophage efferocytosis and efferocytosis-dependent reprogramming, including intestinal epithelial repair capacity. METHODS: Using apoptotic neutrophils and synthetic apoptotic targets, we determined the effects of macrophage specific Cox2 knockout and pharmacological COX2 inhibition on the efferocytosis capacity of mouse primary macrophages. COX2-mediated efferocytosis-dependent eicosanoid lipidomics was determined by liquid chromatography tandem mass spectrometry. Small intestinal epithelial organoids were employed to assay the effects of COX2 on efferocytosis-dependent intestinal epithelial repair. RESULTS: Loss of COX2 impaired efferocytosis in mouse primary macrophages, in part, by affecting the binding capacity of macrophages for apoptotic cells. This effect was comparable to that of high-dose lipopolysaccharide and was accompanied by both dysregulation of macrophage polarization and the inhibited expression of genes involved in apoptotic cell binding. COX2 modulated the production of efferocytosis-dependent lipid inflammatory mediators that include the eicosanoids prostaglandin I2, prostaglandin E2, lipoxin A4, and 15d-PGJ2; and further affected secondary efferocytosis. Finally, macrophage efferocytosis induced, in a macrophage COX2-dependent manner, a tissue restitution and repair phenotype in intestinal epithelial organoids. CONCLUSIONS: Macrophage COX2 potentiates efferocytosis capacity and efferocytosis-dependent reprogramming, facilitating macrophage intestinal epithelial repair capacity.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Enfermedades Inflamatorias del Intestino , Fagocitosis , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/farmacología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Macrófagos/metabolismo , Ratones , Fagocitosis/genética
6.
J Lipid Res ; 63(1): 100153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808192

RESUMEN

We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.


Asunto(s)
Disbiosis
8.
AIDS ; 35(4): 543-553, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33306550

RESUMEN

OBJECTIVES: Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV. DESIGN: Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV. METHODS: We used two humanized murine models of HIV infection to determine the impact of oral Tg6F with ART (HIV+ART+Tg6F+) on innate immune activation (plasma human sCD14, sCD163) and gut barrier dysfunction [murine I-FABP, endotoxin (LPS), LPS-binding protein (LBP), murine sCD14]. We also used gut explants from 10 uninfected and 10 HIV-infected men on potent ART and no morbidity, to determine the impact of ex-vivo treatment with 4F for 72 h on secretion of sCD14, sCD163, and I-FABP from gut explants. RESULTS: When compared with mice treated with ART alone (HIV+ART+), HIV+ART+Tg6F+ mice attenuated macrophage activation (h-sCD14, h-sCD163), gut barrier dysfunction (m-IFABP, LPS, LBP, and m-sCD14), plasma and gut tissue oxidized lipoproteins. The results were consistent with independent mouse models and ART regimens. Both 4F and 6F attenuated shedding of I-FABP and sCD14 from gut explants from HIV-infected and uninfected participants. CONCLUSION: Given that gut barrier dysfunction and macrophage activation are contributors to comorbidities like cardiovascular disease in HIV, apoA-I mimetics should be tested as therapy for morbidity in chronic treated HIV.


Asunto(s)
Infecciones por VIH , Animales , Apolipoproteína A-I , Biomarcadores , Infecciones por VIH/tratamiento farmacológico , Receptores de Lipopolisacáridos , Activación de Macrófagos , Ratones
9.
Semin Cancer Biol ; 73: 158-168, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33188891

RESUMEN

Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.


Asunto(s)
Apolipoproteínas , Imitación Molecular , Neoplasias , Animales , Humanos , Péptidos
10.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040646

RESUMEN

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Variación Genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Polimorfismo de Nucleótido Simple
11.
Hypertension ; 76(3): 985-996, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32713273

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.


Asunto(s)
Apoptosis , Células Endoteliales , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión Pulmonar/metabolismo , Péptidos/farmacología , Arteria Pulmonar , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Diferenciación Celular , Proliferación Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Hipertensión Pulmonar/prevención & control , Factores Inmunológicos/farmacología , Inmunoproteínas , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Complejo de la Endopetidasa Proteasomal , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Linfocitos T
12.
Curr Opin Lipidol ; 30(5): 383-387, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31356236

RESUMEN

PURPOSE OF REVIEW: To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. RECENT FINDINGS: Integrin ß7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes. Enterocyte-specific knockdown of stearoyl-CoA desaturase-1 significantly improved dyslipidemia in LDL receptor null (Ldlr) mice fed a Western diet. Adding a concentrate of tomatoes transgenic for the apolipoprotein A-I mimetic peptide 6F to the chow of wild-type mice altered lipid metabolism in the small intestine, preserved Notch signaling and reduced tumor burden in mouse models. The phospholipid-remodeling enzyme Lpcat3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis in Apc mice. SUMMARY: The small intestine is important for regulating metabolism and inflammation in animal models of both atherosclerosis and cancer.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/genética , Aterosclerosis/genética , Neoplasias/genética , Receptores de LDL/genética , Estearoil-CoA Desaturasa/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Cadenas beta de Integrinas/genética , Intestino Delgado/metabolismo , Ratones , Neoplasias/metabolismo , Neoplasias/patología
13.
J Clin Invest ; 129(9): 3670-3685, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184596

RESUMEN

Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge. Cox2 MKO also reduced inflammation resolving lipoxin A4 (LXA4) in intestinal tissue, while administration of an LXA4 analog rescued disease in Cox2 MKO mice fed CCHF. The apolipoprotein A-I (APOA1) mimetic 4F mitigated disease in both the Cox2 MKO/CCHF and piroxicam-accelerated Il10-/- models of inflammatory bowel disease (IBD) and reduced elevated levels of pro-inflammatory mediators in tissue and plasma. APOA1 mimetic Tg6F therapy was also effective in reducing intestinal inflammation in the Cox2 MKO/CCHF model. We further demonstrated that APOA1 mimetic peptides: i) inhibited LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-phosphatidylcholine (oxPAPC) dependent pro-inflammatory responses in human macrophages and intestinal epithelium; and ii) directly cleared pro-inflammatory lipids from mouse intestinal tissue and plasma. Our results support a causal role for pro-inflammatory and inflammation resolving lipids in IBD pathology and a translational potential for APOA1 mimetic peptides for the treatment of IBD.


Asunto(s)
Apolipoproteína A-I/farmacología , Ciclooxigenasa 2/genética , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos/patología , Animales , Modelos Animales de Enfermedad , Endotoxinas/metabolismo , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno/metabolismo , Péptidos/química , Permeabilidad , Piroxicam/farmacología , Receptores de Formil Péptido/metabolismo , Transducción de Señal
14.
Mol Metab ; 25: 50-63, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31027994

RESUMEN

OBJECTIVE: Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS: We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS: Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS: BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Obesidad/metabolismo , Adipocitos/patología , Adipogénesis/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Morfogenéticas Óseas/efectos de los fármacos , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Ingestión de Alimentos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Estudios de Asociación Genética , Producto de la Acumulación de Lípidos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Transducción de Señal/genética , Termogénesis/genética , Termogénesis/fisiología , Transcriptoma , Proteína Desacopladora 1/genética
15.
J Mol Cell Cardiol ; 129: 154-164, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30802459

RESUMEN

OBJECTIVE: To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). APPROACH: IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) ±â€¯LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3ß protein levels, and cell apoptosis were evaluated. RESULTS: PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3ß levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondrial membrane potential, pGSK-3ß levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. CONCLUSION: PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/Akt/GSK-3ß RISK pathway.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Aguda , Animales , Apoptosis , Arildialquilfosfatasa/deficiencia , Cardiotónicos/metabolismo , Línea Celular , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Ratas
16.
Antioxidants (Basel) ; 8(1)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641857

RESUMEN

(1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice.

17.
J Lipid Res ; 59(10): 1818-1840, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30139760

RESUMEN

After crossing floxed stearoyl-CoA desaturase-1 (Scd1fl/fl) mice with LDL receptor-null (ldlr-/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1fl/fl/ldlr-/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1fl/fl/ldlr-/- mice gained more weight than Scd1fl/fl/ldlr-/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1fl/fl/ldlr-/-/VilCre compared with Scd1fl/fl/ldlr-/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1fl/fl/ldlr-/-/VilCre mice compared with Scd1fl/fl/ldlr-/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1fl/fl/ldlr-/- mice similar to that seen in Scd1fl/fl/ldlr-/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1fl/fl/ldlr-/- mice, but not in Scd1fl/fl/ldlr-/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr-/- mice.


Asunto(s)
Enterocitos/enzimología , Eliminación de Gen , Receptores de LDL/deficiencia , Receptores de LDL/genética , Estearoil-CoA Desaturasa/metabolismo , Proteínas de Fase Aguda/metabolismo , Animales , Peso Corporal , Proteínas Portadoras/metabolismo , HDL-Colesterol/sangre , Dislipidemias/enzimología , Dislipidemias/genética , Dislipidemias/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Yeyuno/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lisofosfatidilcolinas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Estearoil-CoA Desaturasa/deficiencia , Estearoil-CoA Desaturasa/genética , Receptor Toll-Like 4/metabolismo
18.
Sci Rep ; 8(1): 9032, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899427

RESUMEN

Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.


Asunto(s)
Apolipoproteína A-I/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Experimentales/tratamiento farmacológico , Péptidos/farmacología , Carga Tumoral/efectos de los fármacos , Animales , Apolipoproteína A-I/química , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/patología , Receptores Notch/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Carga Tumoral/genética
19.
Cell Death Dis ; 9(3): 392, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531225

RESUMEN

Ovarian cancer (OC) is most lethal malignancy among all gynecological cancer. Large bodies of evidences suggest that mitochondrial-derived ROS play a critical role in the development and progression of OC. Paraoxonase 2 (PON2) is a membrane-associated lactonase with anti-oxidant properties. PON2 deficiency aggravates mitochondrial ROS formation, systemic inflammation, and atherosclerosis. The role of PON2 in cancer development remains unknown. In this report, in human, we identified that PON2 expression is higher in early stages (but not in late stages) of OC when compared to normal tissue. Using a mouse xenograft model of OC, we demonstrate that overexpression of PON2 prevents tumor formation. Mechanistically, PON2 decreases OC cell proliferation by inhibiting insulin like growth factor-1 (IGF-1) expression and signaling. Intriguingly, PON2 reduces c-Jun-mediated transcriptional activation of IGF-1 gene by decreasing mitochondrial superoxide generation. In addition, PON2 impairs insulin like growth factor-1 receptor (IGF-1R) signaling in OC cells by altering cholesterol homeostasis, which resulted in reduced caveolin-1/IGF-1R interaction and IGF-1R phosphorylation. Taken together, we report for the first time that PON2 acts as a tumor suppressor in the early stage of OC by reducing IGF-1 production and its signaling, indicating PON2 activation might be a fruitful strategy to inhibit early stage ovarian tumor.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Neoplasias Ováricas/enzimología , Animales , Arildialquilfosfatasa/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estadificación de Neoplasias , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
20.
Cell Stem Cell ; 22(2): 206-220.e4, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395055

RESUMEN

Adequate availability of cellular building blocks, including lipids, is a prerequisite for cellular proliferation, but excess dietary lipids are linked to increased cancer risk. Despite these connections, specific regulatory relationships between membrane composition, intestinal stem cell (ISC) proliferation, and tumorigenesis are unclear. We reveal an unexpected link between membrane phospholipid remodeling and cholesterol biosynthesis and demonstrate that cholesterol itself acts as a mitogen for ISCs. Inhibition of the phospholipid-remodeling enzyme Lpcat3 increases membrane saturation and stimulates cholesterol biosynthesis, thereby driving ISC proliferation. Pharmacologic inhibition of cholesterol synthesis normalizes crypt hyperproliferation in Lpcat3-deficient organoids and mice. Conversely, increasing cellular cholesterol content stimulates crypt organoid growth, and providing excess dietary cholesterol or driving endogenous cholesterol synthesis through SREBP-2 expression promotes ISC proliferation in vivo. Finally, disruption of Lpcat3-dependent phospholipid and cholesterol homeostasis dramatically enhances tumor formation in Apcmin mice. These findings identify a critical dietary-responsive phospholipid-cholesterol axis regulating ISC proliferation and tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Colesterol/metabolismo , Intestinos/patología , Fosfolípidos/metabolismo , Células Madre/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/deficiencia , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Vías Biosintéticas , Carcinogénesis/patología , Proliferación Celular , Ratones , Organoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...